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Abstract. The effect of higher-order corrections to the Born approximation is studied for the
previously obtained giant conductance enhancement in tunnel-coupled double quantum wires in a
magnetic field by including both impurity and interface-roughness scattering. The enhancement is
caused by an abrupt suppression of back-scattering of electrons which occurs when the chemical
potential is in the anticrossing gap of the ground tunnel-split doublet. The calculated conductance
enhancement is large, and the relative higher-order correction to the enhancement is found to be
significant for long-range scattering potentials. However, this relative higher-order correction will
be reduced as the range of scattering potentials becomes small. The correction depends on various
effects, such as the magnetic field, electron and impurity densities, impurity positions, symmetric
and asymmetric doping profiles, centre barrier thickness, and degree of interface roughness.

1. Introduction

In a recent letter, one of the authors proposed a mechanism for giant low-temperature magneto-
conductance mechanism in a closely tunnel-coupled double-quantum-wire structure [1]. The
impurity-limited conductance was shown to be enhanced abruptly by as much as two orders of
magnitude within a narrow range of applied magnetic field. The double quantum wires which
are stacked in the z-direction and extended along the y-direction are created by adding a lateral
confinement to GaAs double quantum wells (QWs) in the x-direction. The lateral confinement
is achieved by depositing split metal gates on the front and back of the double QWs (DQWs)
of well widths b, which deplete the electrons underneath the gates when a negative voltage is
applied. The thickness LB of the AlGaAs centre barrier between the two QWs is small (e.g.,
15–50 Å), allowing electrons to tunnel in the z-direction. In this paper, we consider an extreme
quantum size limit where only the ground sublevel from the x-confinement and the ground
tunnel-split doublet from the z-confinement are relevant. The magnetic field �B = (B, 0, 0) is
applied in the x-direction. Recently, Vurgaftman and Meyer [2] (VM) studied the conductance
enhancement arising from the interface-roughness scattering. By using a two-dimensional
finite-difference wave-packet technique and a single-particle approximation, they obtained
a much smaller conductance enhancement than predicted by the Born approximation [1] in
the presence of interface-roughness scattering. Therefore, it is necessary to examine the
effects of higher-order corrections to the Born approximation. We find that corrections to
the enhancement can be very large for long-range scattering potentials and can reduce the
enhancement by one order of magnitude when the interaction range is of the order of the
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well-to-well separation. However, for short-range impurity potentials, the corrections are
much smaller and the conductance enhancement can still be one to two orders of magnitude as
predicted by Lyo [1], depending on the impurity positions. For interface-roughness scattering,
the enhancement can be much smaller even in the Born approximation when the roughness
occurs at least at one of the interfaces of the centre barrier (e.g., GaAs/AlGaAs) because there
is a significant overlap of the wave functions of the two wells at these interfaces.

The basic idea of the conductance enhancement in the presence of impurity scattering
can be understood from the energy dispersion curves of symmetric double quantum wires at
B = 4.8 T in figure 1. Here, the dash–dotted curves indicate the energy parabolas of the
two QWs in the absence of tunnelling, displaced relative to each other by the magnetic field
by �k = d/�2 where d = b + LB is the well-to-well separation and � = (h̄/eB)1/2 is the
magnetic length. The degeneracy at the crossing point is removed due to tunnelling, opening an
anticrossing gap which separates the upper and lower branches shown by the solid curves. The
gap moves up in energy as the diamagnetic energy increases with B and crosses the chemical
potential µ [1]. The chemical potential is shown by a horizontal dashed line in figure 1. The
Born approximation for the momentum dissipation corresponds to the direct back-scattering
of electrons between the initial and final Fermi points ki and kf shown by the filled circles. In
this case, the confinement wave functions at the two Fermi points are separated and localized
in the left and right QWs with a very small overlap, yielding a very small scattering rate for
short-range impurity interaction. In contrast, when µ is above the gap, we have two pairs of
Fermi points such that the wave functions of the pairs have large amplitudes in the left and
right QWs, respectively, yielding a large scattering rate. Also, when µ is below the gap at a
higher field, back-scattering occurs inside the same QW, as illustrated by the broken arrows

-0.70 -0.56 -0.42 -0.28 -0.14 0.00 0.14 0.28 0.42 0.56 0.70
45.0

45.5

46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

50.0

E
ne

rg
y 

Le
ve

ls
   

 (
m

eV
)

Wave Vector    (2.26 x 10 -2 1/A)

µ
k

f
k

i

Figure 1. Energy dispersionEz
j (k) (solid curves) with j = 1, 2 atB = 4.8 T for η = 0.3, b = 80 Å,

LB = 50 Å and a schematic illustration of the two-step impurity back-scattering processes. The
dashed horizontal line represents the chemical potential µ at T = 4 K for n1D = 6.5 × 105 cm−1.
The dash–dotted curves are the energy levels in the absence of electron tunnelling between the
two wires. The solid arrows indicate the higher-order processes of impurity scattering through the
intermediate states (open circles) near the gap edges between the initial (ki ) and final (kf ) states
(filled circles) when µ lies inside the gap. The broken arrows represent the impurity back-scattering
processes within the quantum wires when µ is below the gap.
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in figure 1. Therefore, the scattering rate is relatively large when µ lies outside the gap. As a
result, a giant conductance enhancement is obtained in the range of the magnetic field where
µ is inside the gap.

The Born approximation may, however, underestimate the scattering rate when µ is inside
the gap and overestimate the conductance enhancement. There are higher-order processes
which give significant contributions to back-scattering. These processes are illustrated in
figure 1 by solid arrows for the case of impurity scattering. In these two-step processes,
scattering occurs through the intermediate virtual states near the gap edges (i.e., near k = 0)
shown by the open circles. These intermediate states have large amplitudes in both QWs,
providing a significant simultaneous overlap with the initial- and final-state wave functions at
ki and kf . For the long-range impurity interaction, the higher-order processes are expected to
be more effective because the wave-function overlap between the intermediate states and the
initial and final states is no longer limited to a small range around impurity sites. In this paper,
we study the effect of the higher-order contributions from impurity and interface-roughness
scattering. For both short-range impurity and interface-roughness scattering, the higher-order
correction to the enhancement is significant, but the Born approximation is still proved to be
qualitatively valid. For long-range scattering potentials, however, the correction is even larger
and the Born approximation is no longer valid.

The organization of this paper is as follows. In section 2, we present the formalism
for impurity and interface-roughness scattering beyond the Born approximation for the
conductance of the electrons in the double quantum wires under a magnetic field. Numerical
results and discussion are presented in section 3 for the conductance and enhancement by
comparing the results from both the Born approximation and higher-order full theory for
impurity and interface-roughness scattering as a function of magnetic field. The paper is
concluded in section 4 with some brief remarks.

2. Formalism

Using the Landau gauge for the vector potential �A = (0,−Bz, 0), the Hamiltonian of the
system is given by Ĥ = Ĥz + Ĥx with

Ĥz = − h̄2

2

∂

∂z

[
1

m∗
e (z)

∂

∂z

]
+ VDQW(z) +

h̄2

2m∗
e (z)

(
k − z

�2

)2

(1)

Ĥx = − h̄2

2mW

∂2

∂x2
+ VL(x) (2)

where m∗
e (z) is the position-dependent effective mass of electrons in the z-direction, which

equals mW = 0.0665m0 inside the GaAs wells and mB = (0.0665 + 0.083η)m0 inside the
AlηGa1−ηAs barriers with η being the alloy composition index of the ternary barrier material,
m0 is the free electron mass, VDQW(z) = 0.57 × 1.427η (eV) in the barrier region and zero
inside the well, and VL(x) is the lateral confinement potential of the quantum wires. The last
term in equation (1) is the kinetic energy along the wire direction with the wavenumber k. For
the Hamiltonian in equations (1) and (2), the electron wave functions can be written as

〈�r|j, k〉 = φ0(x)
exp(iky)√

Ly

ψjk(z) (3)

where Ly is the length of the quantum wires. The electrons are assumed to be in the lowest
energy eigenstateφ0(x) in the x-direction, and the index j = 1, 2 stands for the lower and upper
tunnel-split branches in the z-direction. The electron energy is given by Ejk = Ex

0 + Ez
j (k),

where Ez
j (k) is determined by Ĥzψjk(z) = Ez

j (k)ψjk(z), and Ex
0 is the ground level given
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by Ĥxφ0(x) = Ex
0 φ0(x). As seen from the last term in equation (1), the effect of the B-field

is to displace the origins of the transverse crystal momenta k in the wire direction in the two
quantum wells relative to each other by �k = d/�2. The energy dispersion curves Ez

j (k) are

displayed in figure 1 for η = 0.3, b = 80 Å, LB = 50 Å, and B = 4.8 T.
The conductance is given by

G(B) = 2e2

L2
y

∑
j,k

vjk

[−f ′(Ejk)
]
gjk (4)

wherevjk = h̄−1 dEz
j (k)/dk, gjk = vjkτjk , and τjk is the relaxation time. The factor of 2 results

from the spin summation. In equation (4), f ′(Ejk) is the first derivative of the Fermi–Dirac
distribution function. The quantity gjk represents the linear deviation from the equilibrium
Fermi–Dirac distribution and satisfies the Boltzmann equation:

vjk − 2π

h̄

∑
m,p

(gjk − gmp)Ijk,mpδ(Ejk − Emp) = 0 (5)

where Ijk,mp = I(0)
jk,mp + �Ijk,mp is the irreducible scattering part shown in figure 2(a) for

impurity scattering in the diagrammatic expansion of the current–current correlation function
[3] within the ladder approximation. For interface-roughness scattering, an additional two-site
diagram shown in figure 2(c) is necessary. The first term I(0)

jk,mp, represented by a rung in
the left panel of figure 2(a), is the Born approximation while the second term is the higher-
order single-site correction described in figure 1. Although this term is of higher order in
the scattering potential than the Born term, it occurs without a small direct overlap between
the initial and final states in the gap. Instead, the final and initial states are mediated through
the intermediate states which have large overlap with both initial and final states as discussed
in section 1 and as seen in equation (12). However, we need not consider the third-order
contributions shown in figure 2(b) which include a direct overlap between the initial and final
states.

(a) (b) (c)

Figure 2. (a) Second-order (left) and fourth-order (right) irreducible impurity scattering parts.
(b) These third-order diagrams for impurity scattering are not important for the reason described
in the text. (c) The two-site irreducible interface-roughness scattering part.

The conductance expressed in equation (4) yields

G(B) = 2e2

hLy

g (6)

where g is the sum of gjk over all the Fermi points. An exact solution for g was obtained
in reference [1] and is given by replacing V 2(k, p) in equations (5)–(7) of reference [1] with
Ijk,mp.

For impurity scattering, the Born term in equation (5) is

I(0)
jk,�s = NI

∫
d3 �Rλ P( �Rλ)

∣∣uλ
jk,�s

∣∣2
(7)
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where �Rλ is the position of an individual impurity atom and P( �Rλ) is the probability density
distribution function of the impurity atoms in the system with∫

d3 �Rλ P( �Rλ) = 1.

The quantity NI is the total number of impurities in the system. The matrix element in equation
(7) is given by

uλ
jk,mp = 1

Ly

∫
d3�r U imp(�r − �Rλ)φ

2
0(x) exp[i(p − k)y]ψjk(z)ψmp(z) (8)

where U imp(�r − �Rλ) is the interaction potential between the electron at �r and the impurity atom
at �Rλ. The higher-order scattering part in equation (5) is given by

�Ijk,�s = NI

∫
d3 �Rλ P( �Rλ)

∣∣T λ
jk,�s(Ejk)

∣∣2
(9)

where T λ
jk,�s(E) includes only the principal part:

T λ
jk,�s(E) =

∑
m,p

uλ
jk,mpu

λ
mp,�s

(E − Emp)

[E − Emp]2 + [1mp(E)]2
. (10)

Here, 1mp(E) is the energy-dependent damping:

1jk(E) = πNI

∑
m,p

∫
d3 �Rλ P( �Rλ)

∣∣uλ
jk,mp

∣∣2
δ(E − Emp). (11)

We first assume that the impurities are distributed uniformly on several δ-doping sheets
perpendicular to the z-direction [4] with the distribution function given by

P(Zλ) = [C1δ(Zλ − z1) + C2δ(Zλ − z2) + · · ·] /S
where zi is the impurity sheet position, S is the area of the impurity sheet, and Ci is the
fractional distribution with C1 +C2 + · · · = 1. Mostly, we will study a binary distribution (i.e.,
C1 + C2 = 1) for various positions of the impurity sheets. Next, we assume that the screened
electron–impurity interaction takes a Gaussian form [5]:

U imp(�r − �Rλ) = U0 exp

[
−|�r − �Rλ|2

42
0

]
(12)

where the interaction strength is U0 and 40 measures the interaction range. Finally, we
assume that the lateral confinement of the quantum wires takes a parabolic potential [6]
VL(x) = mW52

xx
2/2, yielding

φ0(x) =
(

α√
π

)1/2

exp

(
−1

2
α2x2

)
(13)

with α = √
mW5x/h̄. Here 2/α represents the confinement width of wave functions in

quantum wires. The interaction matrices in equations (7) and (9) are then explicitly given by

I(0)
jk,�s = nIπα44

0U
2
0

Ly

√
1 + α242

0

√
π

2
exp

[
−1

2
(s − k)242

0

] ∑
β

Cβ

[
W

β

jk,�s

]2
(14)

�Ijk,�s = nIπ
2α348

0U
4
0

L3
y(1 + α242

0)
3/2

√
π

2

∑
β

Cβ

{∑
m,p

exp

(
−1

4
[(p − k)2 + (s − p)2]42

0

)

× (E − Emp)

[E − Emp]2 + [1mp(E)]2
W

β

jk,mpW
β

mp,�s

}2

(15)
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where nI = NI/S is the two-dimensional impurity density of the system, and the impurity
interaction integral is given by

W
β

jk,mp =
∫

dz ψjk(z)ψmp(z) exp

[
− 1

42
0

(z − zβ)
2

]
. (16)

For interface-roughness scattering, its scattering potential takes the following form:

V IR(�r) = ±V0

∑
λ=1,2

δ(z − Zλ) δbλ(�r‖) (17)

where λ = 1, 2 stands for the two rough interfaces from the AlGaAs to the GaAs layer in
DQWs during the MBE growth, Zλ is the position of the rough interfaces, V0 is the well
depth, δbλ(�r‖) is the layer fluctuation, and �r‖ is the position vector within the interfaces. The
potential in equation (17) yields the well-known expression (∂E/∂bλ) δbλ for arbitrary V0 [7].
By assigning a Gaussian form to the n-site correlation function of layer fluctuations:

〈δbλ(�r1‖) δbλ(�r2‖) · · · δbλ(�rn‖)〉 = (δbλ)
n

√
n

πL2

∫
d2�r‖

n∏
i=1

exp

[
− (�r‖ − �ri‖)2

L2

]
(18)

we find

I(0)
jk,�s =

√
πα δb2 ξ 2V 2

0

Ly

√
2 + α2ξ 2

exp

[
−1

4
(s − k)2ξ 2

] ∑
λ=1,2

[
ψjk(Zλ)ψ�s(Zλ)

]2
(19)

�Ijk,�s = π3/2α3 δb4 ξ 6V 4
0√

2L3
y(2 + α2ξ 2)3/2

∑
λ=1,2

[
ψjk(Zλ)ψ�s(Zλ)

]2

×
{∑

m,p

exp

(
−1

8
[(p − k)2 + (s − p)2]ξ 2

)

× (E − Emp)

[E − Emp]2 + [1mp(E)]2

[
ψmp(Zλ)

]2
}2

+
πα2 δb4 ξ 4V 4

0

L2
y(2 + α2ξ 2)

∑
m,p;m′,p′

δp+p′,k+s exp

[
−1

4
(k − p)2ξ 2

]
exp

[
−1

4
(k − p′)2ξ 2

]

× (E − Emp)

[E − Emp]2 + [1mp(E)]2

(E − Em′p′)

[E − Em′p′ ]2 + [1m′p′(E)]2

×
{ ∑

λ=1,2

[
ψjk(Zλ)ψ�s(Zλ)

] [
ψmp(Zλ)ψm′p′(Zλ)

]}2

(20)

where ξ = √
2L is the correlation length of the interface roughness,

1jk(E) = π
∑
m,p

I(0)
jk,mpδ(E − Emp) (21)

and δb is the average displacement of the rough interface. Note that the right-hand side of
equation (18) yields (δbλ)

n for �r1‖ = �r2‖ = · · · = �rn‖. Equation (18) reduces to the standard
expression exp[−(�r1‖ − �r2‖)2/ξ 2] for n = 2. In equation (20), the first term corresponds to
the single-site correction given by the right-hand panel of figure 2(a) and the second term to
the two-site correction given by figure 2(c). It is clear from equations (19) and (20) that the
factor of small direct overlap [ψjk(Zλ)ψ�s(Zλ)]2 at the two rough layers between the initial
and final states in the anticrossing gap is equally kept in I(0)

jk,�s and �Ijk,�s due to the contacting
potential in equation (17).
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3. Numerical results and discussion

In this section, we present numerical results for the B-dependent conductance and its enhance-
ment. Several different structures of double quantum wires as well as doping and roughness
configurations are considered to bring out salient features of the results.

In the following numerical calculations, we consider three samples. Sample 1 is the
doped symmetric AlGaAs/GaAs DQW with impurity density nI = 8.12 × 108 cm−2, well
depth V0 = 280 meV, well width b = 80 Å, and wire confinement width 2/α = 42 Å. The
effective mass of electrons is mW = 0.067m0 (mB = 0.073m0) in the wells (barriers). The
centre barrier thickness is LB = 50 Å, and the tunnelling gap �SAS at B = 0 is 1.6 meV.
The impurity interaction strength is U0 = 1.26 eV. Sample 2 has the same parameters as
those of sample 1 except that the centre barrier thickness is LB = 40 Å and the tunnelling
gap at B = 0 is 3.6 meV. Sample 3 is a modulation-doped DQW with interface roughness.
It has V0 = 250 meV and LB = 40 Å. The parameters of sample 3 are the same as those
in reference [2]. �SAS = 3.6 meV at B = 0. The correlation length is ξ = 30 Å, and
the average displacement δb = 5 Å. However, the one-dimensional electron density here is
n1D = 6.5 × 105 cm−1 which is smaller than that in reference [2]. The quantities mB , mW , b,
and 2/α for sample 3 are the same as those for sample 1. The calculations are performed at
T = 4 K. Other parameters used in the calculation will be given in the corresponding figure
captions.

The quantities G(B) in arbitrary units are compared for doped samples 1 and 2 with
impurity scattering in figure 3. Here, n1D = 6.5 × 105 cm−1 and 40 = 12 Å. A giant
enhancement of the conductance is obtained when µ lies inside the anticrossing gap in the
range of the fields between 4.2 T and 6.0 T for sample 1 and 3.2 T and 7.4 T for sample 2.
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Figure 3. G(B) (solid and dashed curves) and GBorn(B) (dash–dotted and dash–dot–dotted curves)
in arbitrary units for doped samples 1 and 2 as functions ofB forn1D = 6.5×105 cm−1, 40 = 12 Å,
and nI = 8.12 × 108 cm−2. In the figure, the two impurity sheets sit at the outer interfaces of the
DQWs with C1 = C2 = 0.5.
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The wave functions of sample 2 at the two Fermi points inside the gap have much larger
overlap with the impurities, leading to the reduction of G(B) inside the gap compared to that
of sample 1. For sample 1, the effect of higher-order correction to the conductance peak is
visible. Increased electron tunnelling reduces this correction for sample 2. This reduction is
caused by the enhanced damping arising from larger wave-function overlap at the impurity
sites. Around the middle of the gap, the higher-order correction reaches a minimum. This is
due to the cancellation between the positive and negative contributions to the numerator E−Emp

in equation (10) from the intermediate states near both edges of the gap. Therefore, the higher-
order correction is suppressed there. However, the energy difference E − Emp in equation (10)
between the initial/final state and the intermediate states around the edges of the gap becomes
comparable to or smaller than the damping 1mp(E). This enhances the higher-order correction
and reduces the conductance around the edges of the gap. Small fluctuations of the curves in
figure 3 are due to the numerical fluctuations arising from using a finite number of k-points
in the numerical evaluation. By including the damping effect in the Boltzmann equation in
equation (5), the shape of the curves around the edges of the gap will be slightly modified due
to the enhancement of the damping contribution there. However, the peak conductance around
the middle of the gap remains unchanged.

While G(B)/G(0) is independent of nI for impurity scattering in the Born approximation,
the higher-order contributions depend onnI through the energy-dependent damping in equation
(11). The effect of the higher-order correction is smaller outside the gap for larger nI . This is
due to the fact that back-scattering through the intermediate states becomes suppressed when
the damping 1mp(Ejk) ∝ nI in the denominator of equation (10) becomes large. When the
two impurity sheets are moved slightly from the outer interfaces of the QWs into the outer
barriers, G(B) is increased significantly inside the gap although there is almost no change
outside the gap. In this case, the impurity interaction in equation (16) is reduced when µ is
inside the gap. This explains the increase of G(B). If the impurities are distributed from
the two outer interfaces to all over the four interfaces of the DQWs while keeping the total
number of impurities the same, G(B) with two impurity sheets will be large inside the gap
compared with that with four impurity sheets. This is due to the enhanced impurity interaction
in equation (16) at the centre barrier when µ is inside the gap.

G(B)/G(0) is compared in figure 4 for symmetric and asymmetric impurity doping in
sample 1. Here, n1D = 6.5 × 105 cm−1 and 40 = 12 Å. On changing from symmetric to
asymmetric doping, G(B)/G(0) remains the same inside the gap but increases slightly outside
the gap (see the lower-left inset). The increased G(B)/G(0) outside the gap for asymmetric
doping can be explained in the following way [1, 8]. Under a large B, the wave functions
at the Fermi points become separated into either one of the QWs resembling two parallel
resistors with individual resistance R0 and combined resistance R0/2 for symmetric doping.
For asymmetric doping, the resistance of the two channels becomes R0 ± �R, yielding a
total resistance (R2

0 − �R2)/2R0 < R0/2. This implies that the asymmetric doping with
�R �= 0 has the smaller total resistance or the larger total conductance compared to that of the
symmetric doping. That is, more current flows through the channel with fewer impurities and a
higher conductance, increasing the total conductance. However, at B = 0 or inside the gap, the
conductance depends only on C1 +C2 (which equals 1), yielding the same enhancement inside
the gap for symmetric and asymmetric doping. If the higher-order correction is included, we
find that the conductance enhancement around the middle of the gap is increased compared
to that of the Born approximation mainly because G(0) < GBorn(0) while G(B) ≈ GBorn(B)

inside the gap.
We show in figure 5 the dependence of G(B) in arbitrary units on the electron density

n1D for doped sample 1 with 40 = 12 Å. When n1D is decreased from 6.5 × 105 cm−1
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Figure 4. G(B)/G(0) (solid and dashed curves) and GBorn(B)/GBorn(0) (dash–dotted and
dash–dot–dotted curves) for doped sample 1 as functions of B with symmetric and asymmetric
impurity distributions. For symmetric and asymmetric doping, we set C1 = C2 = 0.5 and
C1 = 0.75, C2 = 0.25, respectively. The two impurity sheets are put at the outer interfaces of the
DQWs. The inset displays on an amplified scale GBorn(B)/GBorn(0) outside the gap for symmetric
and asymmetric doping. The values of n1D , 40, and nI are the same as those for figure 3.

Full Theory

Born Approx.

Full Theory

Born Approx.

0 1 2 3 4 5 6 7

0

500

1000

1500

2000

2500

3000

3500

30000

35000

40000

45000

50000

n
1D

=3.5x105 (cm-1)

n
1D

=6.5x105 (cm-1)

C
o

n
d

u
ct

a
n

ce
  

  
(a

rb
. 

u
n

it)

Magnetic Field    (T)

Figure 5. G(B) (solid and dashed curves) and GBorn(B) (dash–dotted and dash–dot–dotted curves)
in arbitrary units for doped sample 1 as functions of B with different electron densities. For high-
and low-density samples, we set n1D = 6.5 × 105 cm−1 and n1D = 3.5 × 105 cm−1, respectively.
The two impurity sheets are at the outer interfaces of the DQWs with C1 = C2 = 0.5. The values
of 40 and nI are the same as those for figure 3.
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to 3.5 × 105 cm−1, the onset of the gap-enhancement region is shifted from B = 4.2 T to
B = 0.6 T due to the reduction of µ. The great reduction of G(B) inside the gap for the
low-density sample is a result of the large overlap between the wave functions at the two
Fermi points due to the fact that the separation of the wave functions into the two QWs is
far from complete at low B-fields. Although the conductance enhancement at the middle of
the gap is increased for the high-density sample compared to that of the Born approximation
because G(0) < GBorn(0), this difference between the Born approximation and the full theory
is decreased for the low-density sample. This is because of the relatively large damping at the
middle of the gap due to the incomplete separation of the wave functions into the two QWs at
low B-fields.

In figure 6, we show G(B)/G(0) for doped sample 1 with different positions of the
impurity sheets in the centre barrier. Here, n1D = 6.5 × 105 cm−1 and 40 = 12 Å. When
the two impurity sheets are moved inwards symmetrically by 5 Å from the interfaces of the
middle barrier, G(B)/G(0) decreases significantly inside the gap but changes by only a small
amount outside the gap. Because the wave function of the upper branch is independent of k

and antisymmetric at B = 0, it has only a small amplitude at the impurity sites near the centre
of the middle barrier. As a result, G(0) is greatly increased when the two impurity sheets
are pushed towards the centre of the middle barrier. On the other hand, this antisymmetry
is absent at high B-fields when µ lies within the gap. Consequently, G(B)/G(0) is reduced
inside the gap mainly due to the large value of G(0). As the range of the impurity potential
is increased, this effect is expected to be weakened because the wave-function overlap can go
far beyond the impurity sites. When the higher-order correction is included, we find that the
conductance enhancement around the middle of the gap is increased compared to that of the
Born approximation because G(0) < GBorn(0) and G(B) ≈ GBorn(B) inside the gap at the
same time.
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Figure 6. G(B)/G(0) (solid and dashed curves) and GBorn(B)/GBorn(0) (dash–dotted and dash–
dot–dotted curves) for doped sample 1 as functions of B with two positions of the impurity sheets
at the centre barrier: one sample with impurity sheets at the two interfaces of the middle barrier
and the other sample with impurity sheets at 5 Å away from the interfaces inside the middle barrier.
The values of n1D , 40, and nI are the same as those for figure 3.
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As discussed earlier with reference to figure 1, the higher-order corrections are expected
to be more significant for long-range scattering potentials. In order to demonstrate this
effect, we compare G(B)/G(0) with GBorn(B)/GBorn(0) for sample 1 in figure 7 with
n1D = 6.5 × 105 cm−1 for different ranges of the scattering potential. When 40 = 80 Å,
the enhancement inside the gap is reduced significantly. The effect is more pronounced for
40 = 120 Å. Another effect which influences the result is that the long-range interaction
disfavours the large momentum transfer. This effect is clearly seen in figure 7 where the
enhancement for 40 = 120 Å (dash–dot–dotted curve) is much larger than that for 40 = 80 Å
(dash–dotted curve) inside the gap in the Born approximation. This is due to the fact that
the momentum transfer for 2kf -back-scattering in the Born approximation is very large in the
gap (compared to that at B = 0), reducing the scattering rate much more for 40 = 120 Å
than for 40 = 80 Å. The curves for the full theory in figure 7 are, however, dominated by the
higher-order corrections which rely on the momentum transfer of ∼kf which is about the same
as the momentum transfer at B = 0, yielding similar enhancements for both 40 = 120 Å and
40 = 80 Å.

Full Theory
Born Approx.

Full Theory

Born Approx.

0 1 2 3 4 5 6 7
0.0

0.4

0.8

1.2

50

100

150

200

250

300

350

400

450

C
o

n
d

u
ct

a
n

c
e

 E
n

h
a

n
ce

m
e

n
t

Magnetic Field    (T)

Λ
0
=80 (A)

Λ
0
=120 (A)

Figure 7. G(B)/G(0) (solid and dashed curves) and GBorn(B)/GBorn(0) (dash–dotted and dash–
dot–dotted curves) for doped sample 1 as functions of B with different impurity interaction ranges:
one sample with 40 = 80 Å and the other one with 40 = 120 Å; two impurity sheets at the outer
interfaces of the DQWs with C1 = C2 = 0.5. The values of n1D , 40, and nI are the same as those
for figure 3.

In the following we restrict our study to the interface-roughness scattering in modulation-
doped sample 3 in order to compare our result with the simulation result of VM [2]. Figure 8
displays G(B) in arbitrary units, including the higher-order corrections for samples with
different positions of the rough interfaces. The sample with one of the rough interfaces at
the middle barrier corresponds to that studied by VM. For this sample, we note remarkable
differences between our results and those obtained by VM. First, the enhancement inside the
gap from the Born approximation in figure 8 is about 13 which is more than one order of
magnitude smaller than that obtained by VM. This may be due to the fact that VM’s sample
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Figure 8. G(B) (solid and dashed curves) and GBorn(B) (dash–dotted and dash–dot–dotted
curves) in arbitrary units for modulation-doped sample 3 as functions of B with two positions
of rough interfaces. The rough interfaces are illustrated by the doubled line. The parameters
used are: LB = 40 Å, b = 80 Å, 2/α = 42 Å, ξ = 30 Å, δb = 5 Å, V0 = 250 meV, and
n1D = 6.5 × 105 cm−1; one sample with one of the rough interfaces at the middle barrier and
another sample with both rough interfaces at the outer barriers.

has much higher n1D , so µ enters the gap at very high B-fields, making the wave functions
more completely separated. Second, the Born approximation is reasonably accurate at all
B-fields in contrast to VM’s result. For the sample with both rough interfaces at the outer
barriers, however, the higher-order corrections reduce the conductance somewhat more inside
the gap (e.g., by about 10%). The main higher-order contribution arises from the second term
in equation (15). The enhancement for this case is very large mainly because the roughness
is at the outer barrier interfaces. Our n1D in figure 8 is smaller than that used by VM [2].
For larger n1D , a larger number of k-points is necessary for the same accuracy, increasing the
computing time beyond our capability.

For impurity scattering, the damping effect can be made negligible if we keep the impurity
density nI low enough. For interface-roughness scattering, the enhancement is smaller
compared to the case of scattering from remote impurities, because the scattering centres
are close to the QWs. The damping 1 is another factor that restricts the maximum attainable
enhancement for interface-roughness scattering. The idea of enhancement is based on a well-
defined anticrossing gap �SAS � 1. This condition is not satisfied for samples with a wide
centre barrier, although a very large enhancement may be obtained in this case. The smallness
of the ratio r = 1/�SAS � 1 is also assumed in equation (5). While 1 can be made very small
for impurity scattering in principle by modulation doping, some degree of 1 from interface-
roughness scattering is unavoidable at present due to growth problems. Damping modifies
the δ-function into a Lorentzian function, allowing non-energy-conserving scattering via the
Lorentzian wings in equation (5). This higher-order scattering (∼r) may not be negligible when
the Fermi points lie near the middle of the gap. In this case, the direct overlap ∼1/fδ between the
initial and final wave functions is small for resonant scattering between the two Fermi points as



Suppression of back-scattering in double quantum wires 3395

discussed already. Here, fδ is the large Born enhancement factor with the δ-function in equation
(5). In the non-energy-conserving processes, the electron is scattered from the initial Fermi
point near the centre of the gap to the gap edge of the upper branch, thus avoiding the small
wave-function overlap of the resonant scattering introduced by the δ-function approximation.
A quantitative calculation of this effect is beyond our present numerical capability. Therefore,
we carry out an order-of-magnitude estimation by comparing the two contributions in the
scattering part. The effect of these non-energy-conserving processes is to modify the effective
enhancement f roughly by 1/f = 1/fδ + (r/4πs). Here, s = 1 (s = 4) for the short-range
(long-range) scattering potential. The damping correction can be neglected in the limit of
fδ(r/4πs) � 1. In the opposite limit, the enhancement becomes ∼(4πs/r) which is still
large when r � 1. For the two samples with interface roughness and �SAS = 3.67 meV
in figure 8, we find fδ(r/4π) = 0.15 � 1 for the sample with a smaller enhancement
fδ = 14 and fδ(r/4π) = 0.49 < 1 for the sample with a larger enhancement fδ = 36. The
ratio fδ(r/4π) can be even smaller for samples with smoother interfaces, making the Born
δ-function approximation more accurate. The criterion fδ(r/4πs) � 1 has been well satisfied
in figures 3–7.

4. Conclusions and remarks

For impurity scattering, the effect of higher-order corrections to the Born approximation was
studied for the giant conductance enhancement in tunnel-coupled double quantum wires in
a magnetic field. The relative correction to the enhancement at the middle of the gap was
found to be significant for the short-range impurity potential, and become even larger for the
long-range impurity potential. The effects of weak localization and Coulomb interaction on
the electron energy levels have been neglected. Various effects have been found to play
a role in the conductance enhancement. These effects include the impurity and electron
densities, level damping, positions of the impurity sheets, symmetric and asymmetric impurity
distribution, and the centre barrier thickness. The higher-order corrections consist of processes
of two-step back-scattering through the virtual intermediate states near the gap edges. These
processes increase the overlap of the wave functions at the two Fermi points inside the gap
with the impurities and reduce the conductance enhancement compared to that of the Born
approximation.

The effect of interface-roughness scattering on the conductance enhancement was also
studied beyond the Born approximation. In this case, the Born approximation is found to be
still valid as long as the level damping is much smaller than the anticrossing gap. The relative
correction to the enhancement inside the gap was found to reach as much as 10%. Several
effects, such as correlation length, average displacement of interface, centre barrier thickness,
and position of the rough interfaces, have been found to affect the conductance enhancement.
The enhancement in the gap is very large for samples with both rough interfaces at the outer
barriers as shown in figure 8. However, for samples with one of the rough interfaces at the
edges of the centre barrier (e.g., GaAs/AlGaAs QWs), the enhancement is much smaller, but
is still larger than that found by VM [2]. In their paper, only the numerical result was shown,
and the physics behind the result is unclear.
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